TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer.
نویسندگان
چکیده
Prostate cancer is a common and clinically heterogeneous disease with marked variability in progression. The recent identification of gene fusions of the 5'-untranslated region of TMPRSS2 (21q22.3) with the ETS transcription factor family members, either ERG (21q22.2), ETV1 (7p21.2), or ETV4 (17q21), suggests a mechanism for overexpression of the ETS genes in the majority of prostate cancers. In the current study using fluorescence in situ hybridization (FISH), we identified the TMPRSS2:ERG rearrangements in 49.2% of 118 primary prostate cancers and 41.2% of 18 hormone-naive lymph node metastases. The FISH assay detected intronic deletions between ERG and TMPRSS2 resulting in TMPRSS2:ERG fusion in 60.3% (35 of 58) of the primary TMPRSS2:ERG prostate cancers and 42.9% (3 of 7) of the TMPRSS2:ERG hormone-naive lymph node metastases. A significant association was observed between TMPRSS2:ERG rearranged tumors through deletions and higher tumor stage and the presence of metastatic disease involving pelvic lymph nodes. Using 100K oligonucleotide single nucleotide polymorphism arrays, a homogeneous deletion site between ERG and TMPRSS2 on chromosome 21q22.2-3 was identified with two distinct subclasses distinguished by the start point of the deletion at either 38.765 or 38.911 Mb. This study confirms that TMPRSS2:ERG is fused in approximately half of the prostate cancers through deletion of genomic DNA between ERG and TMPRSS2. The deletion as cause of TMPRSS2:ERG fusion is associated with clinical features for prostate cancer progression compared with tumors that lack the TMPRSS2:ERG rearrangement.
منابع مشابه
TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming.
Translocations fusing the strong androgen-responsive gene, TMPRSS2, with ERG or other oncogenic ETS factors may facilitate prostate cancer development. Here, we studied 18 advanced prostate cancers for ETS factor alterations, using reverse transcription-PCR and DNA and RNA array technologies, and identified putative ERG downstream gene targets from the microarray data of 410 prostate samples. O...
متن کاملMolecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer.
Recently, gene fusions between the androgen responsive gene TMPRSS2 and members of the ETS-family of DNA-binding transcription factor genes were found in prostate cancer. Recurrent fusions were identified between the 5'-noncoding region of TMPRSS2 and ERG, or less frequently ETV1 or ETV4, resulting in overexpression of normal or truncated ETS-proteins. Herein, we have analyzed a series of 50 pr...
متن کاملGenetic Interaction between Tmprss2-ERG Gene Fusion and Nkx3.1-Loss Does Not Enhance Prostate Tumorigenesis in Mouse Models
Gene fusions involving ETS family transcription factors (mainly TMPRSS2-ERG and TMPRSS2-ETV1 fusions) have been found in ~50% of human prostate cancer cases. Although expression of TMPRSS2-ERG or TMPRSS2-ETV1 fusion alone is insufficient to initiate prostate tumorigenesis, they appear to sensitize prostate epithelial cells for cooperation with additional oncogenic mutations to drive frank prost...
متن کاملOverexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer.
PURPOSE To gain insight in the mechanism and clinical relevance of TMPRSS2-ERG expression in prostate cancer, we determined the specific characteristics of fusion transcripts starting at TMPRSS2 exon 1 and at a more upstream and less characterized exon 0. EXPERIMENTAL DESIGN We used quantitative PCR analysis to investigate expression of wild-type TMPRSS2(exon 0) and TMPRSS2(exon 1) and of ERG...
متن کاملTMPRSS2-ERG-mediated feed-forward regulation of wild-type ERG in human prostate cancers.
Recurrent gene fusions involving ETS family genes are a distinguishing feature of human prostate cancers, with TMPRSS2-ERG fusions representing the most common subtype. The TMPRSS2-ERG fusion transcript and its splice variants are well characterized in prostate cancers; however, not much is known about the levels and regulation of wild-type ERG. By employing an integrative approach, we show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 66 17 شماره
صفحات -
تاریخ انتشار 2006